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Forecasting emergency department arrivals 
using INGARCH models
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Abstract 

Background Forecasting patient arrivals to hospital emergency departments is critical to dealing with surges 
and to efficient planning, management and functioning of hospital emerency departments.

Objective We explore whether past mean values and past observations are useful to forecast daily patient arrivals 
in an Emergency Department.

Material and methods We examine whether an integer‑valued generalized autoregressive conditional hetero‑
scedastic (INGARCH) model can yield a better conditional distribution fit and forecast of patient arrivals by using 
past arrival information and taking into account the dynamics of the volatility of arrivals.

Results We document that INGARCH models improve both in‑sample and out‑of‑sample forecasts, particularly 
in the lower and upper quantiles of the distribution of arrivals.

Conclusion Our results suggest that INGARCH modelling is a useful model for short‑term and tactical emergency 
department planning, e.g., to assign rotas or locate staff for unexpected surges in patient arrivals.

Keywords Emergency department, Forecasting, Patient arrivals, INGARCH models

Background
The hospital emergency department (ED) is the basic unit 
providing an immediate response to emergency health 
problems. It is a core component in any health system in 
providing care for urgent and potentially serious patho-
logical processes with a possible outcome of death or 

requiring immediate diagnosis and treatment to avoid 
pain. ED activity is both intense and very diverse, cover-
ing from immediately life-threatening pathologies (e.g., 
cardiorespiratory arrest) to serious or potentially serious 
illnesses requiring diagnosis or treatment in the hospital 
setting (e.g., polytrauma, acute myocardial infarction). 
EDs additionally deal with less serious emergencies 
that may require hospitalization for diagnosis (e.g., reti-
nal detachment, pyelonephritis) and also provide initial 
treatment and observation without necessarily involving 
admission. EDs also serve around 40–50% who could fea-
sibly be treated in primary care emergency centres or 24-h 
emergency care facilities with an intermediate resolution. 
About 15% of the population (elderly, frail or chronically 
ill patients) use hospital ED services on a recurring basis 
as a result of the aggravation of their pathologies [14, 29].

Patient arrival in EDs is uneven over time. Distribution 
over the days of the week is not uniform and, although 
there are variations from one centre to another, some 
days account for a clearly higher number of visits, e.g., 
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Mondays (see [9, 20]. Likewise, distribution through-
out the year is not uniform. Demand for care varied in 
relation to holiday periods (demographic movements), 
respiratory virus epidemics, climatic and atmospheric 
changes and social events [20]. Handling surges, which is 
the main challenge to ensuring efficient ED management 
and functioning [7, 16, 21, 26], is closely related to appro-
priate timing of treatment. ED and hospital resources 
therefore have to be planned with some built-in flexibility 
in order to adapt to changing and cyclical changes in the 
demand for services.

In addition to the quantitative aspects of patient arriv-
als in EDs, there is a great qualitative impact, given that 
ED diagnostic and therapeutic activities determine the 
subsequent evolution of admitted patients in terms of ill-
ness resolution, including length of stay, complications 
and patient satisfaction. Patient satisfaction/dissatisfac-
tion with healthcare services in general is strongly con-
ditioned by technical quality and, above all, by perceived 
ED quality, which determines perceptions of overall hos-
pital performance [11].

To avoid congestion and facilitate appropriate delivery 
of medical services, efficient management of ED services 
requires accurate forecasting of patient inflows [3, 5, 8, 
25, 31]. Forecasting is challenging, however, as daily and 
seasonal variations in patient arrivals are featured by a 
high degree of variability and overdispersion [20, 23]. 
Previous empirical research has extensively explored 
the dynamics of arrivals, mainly relying on Poisson and 
negative binomial models with different extensions (see, 
e.g., [3, 28, 34, 35]. However, whether arrivals can be 
predicted from both past mean values and past obser-
vations is still an open question. Nonetheless, informa-
tion on past mean values and past observations could be 
useful not only to make accurate mean value forecasts, 
but also to make predictions at the lower and upper 
arrival distribution quantiles, critical for two reasons: 
(a) efficient healthcare resource allocation when patient 
arrival numbers are low, and (b) avoidance of the nega-
tive impact of patient overflows on healthcare quality.

The objective of this study is to explore whether past 
mean values and past observations are useful to forecast 
daily patient arrivals in an ED, using an integer-valued 
generalized autoregressive conditional heteroscedastic 
(INGARCH) model. This model was designed to describe 
integer-value series featured by small values and overd-
ispersion, not appropriately addressed by autoregressive 
moving average (ARMA) models. Originally proposed 
by Grunwald et al. [15] and Heinen [17], an INGARCH 
process has a Poisson or a negative binomial conditional 
distribution, with a time-varying intensity parameter 
given by a linear function of its p-lagged values and its 

q recent observations. Sharing the spirit of generalized 
autoregressive heteroscedastic (GARCH) models, an 
INGARCH model, by efficiently using past patient inflow 
information and reflecting the dynamics of the volatility 
of arrivals, can potentially yield a better conditional dis-
tribution fit and forecast for patient arrivals.

Our empirical study focuses on daily arrivals, as this 
frequency is useful for both routine planning (e.g., on 
rotas) and tactical planning (e.g., decisions on contacting 
staff). Daily forecasts provide useful support for adminis-
trative decision making and gives early warning signals to 
efficiently handle available physical and human resources. 
Our empirical results for a large hospital conclude that 
the INGARCH model improves both in-sample and out-
of-sample forecasts. In particular, the INGARCH model 
yields a better fit both in the mean and the tails of the 
arrival distribution, and thus reports more accurate fore-
casts for abrupt upward or downward movements in 
arrivals.

Our empirical evidence has implications to support 
ED management and planning decisions, given that our 
modelling approach provides more accurate predictions 
than those based on average counts of patient arrivals, 
in that it reflects all available past information. Our fore-
casting model is especially useful when patient inflow 
is intense, as this is when efficient resource allocation is 
critical to delivering healthcare quality. Given that ED 
arrival data is structured similarly across different hos-
pitals, our evidence could be considered generalizable to 
other hospital EDs.

The paper is organized as follows: Material and Meth-
ods and Results sections describe the models and the 
data, respectively, and Discussion  section presents and 
discusses the empirical results. Finally, Conclusion sec-
tion concludes the paper.

Material and methods
The INGARCH model
To account for past mean values and past observations 
regarding ED arrivals, we could adapt the count data 
nature of ED arrivals to a transformation, e.g., using a 
logarithmic transformation, and then use standard esti-
mation procedures. However, this modelling strategy to 
deal with count data has several drawbacks regarding 
inference and negative predicted values [36], described 
and summarized in Table 1.

In this research we use the INGARCH model, which 
is the integer-valued counterpart to the conventional 
GARCH model [33], where the IN indicates the inte-
ger-valued structure of the data [32]. This model is also 
referred to as the autoregressive conditional Poisson 
model [18] or the Poisson autoregressive model [13].
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A count variable Yt follows an INGARCH(p, q) model 
if its conditional Poisson distribution has a conditional 
mean �t as given by the following recursion:

where ω > 0 and α1, . . . ,αp,β1, . . . ,βq ≥ 0 and 
∑p

i=1 αi +
∑q

j=1 βj < 1 for stationarity reasons [10]. 
Thus, the conditional Poisson distribution evolves over 
time with a mean parameter that depends on its previous 
values and on the past values of the studied variable. This 
distribution is, therefore, conditional equidispersed but 
unconditional overdispersed.

For the particular case of an INGARCH(1,1) model (see 
[10, 19], we have E(Yt |Yt−1) = �t = Var(Yt |Yt−1) . Apply-
ing the law of iterated expectations it follows that 
E(Yt) = E(E(Yt |Yt−1)) = E(�t) =

ω
1−α−β

 . Finally, using 
the law of total variance, it follows that 
Var(Yt ) = E(Var(Yt |Yt−1))+ Var(E(Yt |Yt−1)) = E(�t )+ Var(�t ) > E(�t ) 
and Var(�t) = 1−(α+β)2+α2

1−(α+β)2
E(�t).

The INGARCH model enables a long memory pro-
cess to be modelled parsimoniously, where the con-
ditional mean depends on the whole history of the 

(1)�t = ω +
∑p

i=1
αiYt−i +

∑q

j=1
βj�t−j

process. For the particular case of the INGARCH(1,1), 
we have [12]:

where �0 could be estimated as an additional parameter 
[10].

Alternative specifications to the Poisson INGARCH 
model are the negative binomial INGARCH model, 
where the recursion in Eq. (1) refers to log(�t), the non-
linear Poisson autoregression and a model that includes 
the covariate information in Eq.  (1) [1]. The main 
advantage of assuming a negative distribution instead 
of a Poisson distribution lies in the greater flexibility, 
as the variance may be larger than the mean. Indeed, 
in the Poisson model we have �t = µt = σ 2

t  , while for 
the negative binomial model we have σ 2

t =
µt
π

=
ν(1−π)

π2  
and, depending on the model specification, the dynam-
ics are set in π [38] or in ν [37]. Interestingly, the Pois-
son could be seen as a particular case of the negative 
binomial when π → 1 and ν → ∞.

(2)�t = α
∑t

k=1
βk−1Yt−k + βt

�0 + ω
1− βt

1− β
,

Table 1 Models for non‑count data adapted for count data and their limitations

* If a variable y follows a log-normal distribution, the following identity holds: Var(y|x) =
(

eσ
2
− 1

)

[

E(y|x)
]2

Model Advantages Disadvantages

Normal linear regression
y = xβ + ǫ

ǫ ∼ N
(

0, σ 2
)

Normal distribution approximates the Poisson distribution 
if the mean is higher than 20

No possible inference on single outcomes
The model allows for a negative outcome
The prediction is not coherent, i.e., the forecast is not an 
integer‑valued outcome

Log‑linear model
log(y) = xβ + ǫ

ǫ ∼ N
(

0, σ 2
)

The variable y is modelled as a log‑normal variable The zeros in the data have to be deleted to estimate this 
model, which leads to endogenous sample selection 
problems
The prediction is not coherent, i.e., the forecast is not an 
integer‑valued outcome
There is a restriction on the conditional variance, i.e., it must 
be quadratic in the conditional expectation.*

Log‑linear model 
with constant c to deal 
with zeros
log(y + c) = xβ + ǫ

ǫ|x ∼ N 0, σ 2

The model can be estimated even if there are zero elements 
in the dataset

The log(y) is not linear in x, which introduces bias in the esti‑
mation of the model
The prediction is not coherent, i.e., the forecast is not an 
integer‑valued outcome

Non‑linear model
y = exp(xβ)+ ǫ

ǫ ∼ N
(

0, σ 2
)

There is no problem in dealing with zero values The model allows for a negative outcome
The prediction is not coherent, i.e., the forecast is not an 
integer‑valued outcome

Ordered probit and logit
state equation:
y∗ = xβ + ǫ

Observation equation:
y = 0 if y∗ < α0
y = 1 if α0 ≤ y∗ < α1
y = 2 if α1 ≤ y∗ < α2
.
.
.

The integer‑valued structure of the data is considered
The prediction can be coherent, i.e., if we wanted to forecast 
the future median value, it would be an integer‑valued 
outcome

The underlying count process is not reflected
The forecast is limited to values already observed in the data
Complexity is excessive when the number of counts is high
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For the case of the negative binomial distribution, 
NB(ν,π) with ν > 0 and 0 < π < 1 , the time-varying 
parameter π is modelled via the equation πt =

1

1+
�t
ν

 

[38], and the dynamics of the parameter ν through the 
equation νt = �tπ

1−π
 [37].1 The probability distribution 

mass of Y  , where Y ∼ NB(ν,π) is

The parameters of those models are estimated by maxi-
mum likelihood, where the objective function is given by 
∑T

t=1 log
(

P
(

Y = y|θt
))

 , with θt = �t for the Poisson dis-
tribution (see Eq. (1)), θt = (πt , ν) for the negative bino-
mial model by Zhu [38], and θt = (π , νt) for the negative 
binomial by Xu [37].

To evaluate forecast accuracy, we use the mean 
squared error (MSE) and the mean absolute error 
(MAE), which compare the mean and median, respec-
tively, with the real number of arrivals. The MSE is 
computed as:

where yt denotes patient arrivals at time t, and yt|t−1 is 
the mean number of patient arrivals at time t forecasted 
with the data available at time t-1. The MAE is computed 
as:

where ỹt|t−1 is the median of the patient arrival distribu-
tion at time t, built using the data obtained at t-1.

In addition, to evaluate the fit of the future entire dis-
tribution with respect to real patient arrival data, we 
compute the probability integral transformation (PIT) 
[6, 22]. Relative frequencies are obtained as the ratio 
between the forecasted PIT of two consecutive quin-
tiles and the probability of a perfect data fit,the closer 
the bars to one, the better the fit of forecasted values. 
Consecutive quintiles are given by ˜F

(

j
10

)

− ˜F
(

j−1
10

)

 for 
j = 1,…,10, where:

(3)P
(

Y = y
)

= (1− π)yπν

(

y+ ν − 1
ν

)

.

(4)MSE =
1

T − k

∑T

t=k

(

yt − yt|t−1

)2
,

(5)MAE =
1

T − k

∑T

t=k
|yt − ỹt|t−1|,

where k > 0 and F(·) is the predictive distribution.
We also include a threshold that does not reject the 

null hypothesis of the data coming from a uniform 
(0,1) distribution. Intervals are created similarly to the 
threshold of a backtesting exercise. We assume that 
each observation has 1/10 probability of being in each 
bar, so the distribution of the observations in the PIT 
histogram reflects a bin (T, 0.1), where T indicates the 
number of out-of-sample observations. This technique 
allows us to check whether the data structure is fitted 
correctly in short sample series. To our knowledge, 
there is no previous study of count models that uses a 
statistical criterion for small samples to evaluate the 
PIT histogram.

Data
The data corresponds to daily arrivals in the ED of 
a large 1100-bed university clinical hospital in San-
tiago de Compostela (Spain) during January 2015 to 
December 2020, with a catchment population of about 
450,000 people in that period. ED human resources 
include 36 doctors, 57 nurses and 42 clinical assis-
tants, while physical resources include 21 reclining 
chairs, a critical room with four monitored stations 
for vital emergencies and a monitor room with six 
monitored stations for serious emergencies or patients 
requiring monitored observation. The ED applies 
Manchester triage, which classifies and colour codes 
patients into five levels according to urgency. Of the 
patients who attend the ED, 22.04% are admitted to 
hospital wards, 77.1% are discharged home, 0.48% are 
transferred to another hospital, 0.21% die in the ED 
and 0.17% request voluntary hospital discharge. Fig-
ure  1A shows that inflow seemed to show a seasonal 
trend, but was at a minimum during the early COVID 
crisis, as reflected in the long left tail in the histogram 
in Fig.  1B, and as reflected in the negative skewness 
reported in Table 2. Before the COVID pandemic, the 
mean number of daily arrivals was around 400, but 
structural change since then has reduced that number 
to around 300, and the mean number of monthly and 
annual arrivals is 12,207 and 146,483, respectively. 
Table  2 shows that since the variance is much larger 
than the mean, a model that takes into account this 
overdispersion is required, e.g., a negative binomial 

(6)

�F(u) =















0

u−F(k−1|It−1)
F(k|It−1)−F(k−1|It−1)

1

u ≤ F(k − 1|It−1)

F(k − 1|It−1) ≤ u ≤ F(k|It−1)

u ≥ F(k|It−1)

1 Although the original negative binomial parametrization in those studies 
does not reflect the conditional mean, we keep the dynamics of the conditional 
mean in order to link these extensions to the Poisson case (in line with [33].
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Fig. 1 Time series and histogram of the number of ED arrivals. A Time series of the number of ED arrivals. B Histogram of the number of ED arrivals
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model. The fact that the number of entries is far from 
zero also indicates that zero-inflated models should 
be ruled out.

Figure  2 depicts trends that need to be considered 
when modelling the number of arrivals. Figure  2A 
indicates that the Monday arrival rate is considerably 
greater than that of the remaining weekdays, whereas 
the weekend rate is much lower than the workday rate. 
Figure  2B depicts a higher number of arrivals in the 
first (spring) and fourth (winter) quarters compared to 
the second (summer) and third (autumn) quarters of 
the year.

Results
Empirical evidence
Taking into account the features of daily ED arrivals, 
we use the INGARCH model as it allows changes in the 
count distribution to be captured by considering changes 
in the mean, as reported by Fig.  1 Panel A. Specifically, 
we consider an INGARCH(1,1) model with a negative 
binomial distribution to capture the overdispersion in 
the data, i.e., the variance is higher than the mean, as 
reported in Table  2. Furthermore, we use deterministic 
covariates to identify the increase in arrivals on Mondays 
and in the first and fourth quarter, and the decrease in 
arrivals at weekends and after the COVID outbreak. To 
avoid overfitting problems, we keep model parameteriza-
tion to a minimum. Equation  (7) presents the evolution 
of the conditional mean of a negative binomial model, 
i.e., the Zhu [38] and Xu [37] model specifications, 
or the conditional mean of a Poisson model.2 Hence 
X = [IMonday, IWeekend , IWinter , ICOVID] , and thus:

(7)�t = ω + αYt−1 + β�t−1 + γXt|t−1.

Given that E(�t) = ω
1−α−β

 , in order to have compara-
ble estimates for the exogenous variables in Eq. (7) across 
different model specifications, we set the parameter ω to 
be equal to (1− α − β ) multiplied by the mean number 
of arrivals, computed by discarding the dates that are 
considered within the exogenous variables, i.e., the mean 
number of arrivals on days that are not Monday, the 
weekend, or winter (Q4), or after the COVID outbreak 
(after 13 March 2020, when the Spanish government 
declared a state of alarm).

Table  3 presents the parameters of the Zhu [38], 
Xu et  al. [37] and Poisson models for NB(ν,π) , where 
parameter θ in Table  2 refers to parameter ν for Zhu 
[38] and to parameter π for Xu et  al. [37]. Empirical 
estimates show that, consistent with the above-men-
tioned descriptive features of the data, the Monday 
effect is positive and significant, while the weekend 
effect and the winter effect are both negative and sig-
nificant. Finally, the COVID pandemic had a negative 
impact on mean ED arrivals, consistent with the fall in 
hospital activity except for COVID pathologies. Esti-
mates of the AR and MA parameters show that those 
effects are positive and statistically significant, indicat-
ing that both past mean values and past observations 
are useful in depicting the conditional distribution of 
patient arrivals and, thus, in forecasting those arrivals. 
This evidence holds for both the Zhu [38] and the Xu 
et  al. [37] model specifications. Finally, we obtain the 
Pearson residuals for all the different model specifica-
tions and compute the autocorrelations and the cumu-
lative periodogram, confirming that those residuals are 
white noise as shown in Figs. 3.

Figure  4  depicts the PIT for the Zhu [38], Xu et  al. 
[37] and Poisson models, showing that all the bars from 
Xu et  al. [37] are within the red lines (indicating the 
null hypothesis of being uniformly distributed at 99%), 
but not those for the Zhu [38] model. Interestingly, the 
Poisson PIT is U-shaped, indicating that the restric-
tion imposed by this model, i.e., the conditional mean 
equals the conditional variance, results in a failure to 
forecast lower and upper quantiles of the distribution 
of arrivals.

Finally, to mitigate concerns on overfitting, we run 
an out-of-sample evaluation for a rolling window of all 
the data prior to the day we want to forecast. Results 
for the comparison of each model in terms of the one-
day forecast of the number of arrivals are reported in 
Table  4, which shows the in-sample (2015–2018) and 
out-of-sample (2019–2020) evidence for those met-
rics. Empirical estimates show that the Xu et  al. [37] 
model yields lower MSE and MAE values for both the 

Table 2 Four first moments of the number of ED arrivals for the 
period 2015–2020

2015–2020 2015–2019 2019–2020

mean 400.96 419.01 364.81

variance 4836.52 2017.46 8530.98

skewness ‑1.17 ‑0.05 ‑0.54

kurtosis 4.90 3.11 2.49

2 We also considered a log-linear specification as in Agosto and Giudici [2], 
given that it allows for negative dependence. However, the log-specification 
yielded poorer results than the specification presented here – a result that 
can be explained by the positive correlations in our data (see Table 5. This 
evidence is available from the authors upon request.
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Fig. 2 Boxplots of the number of ED arrivals. A Boxplot of the daily number of ED arrivals. B Boxplot of the quarterly number of ED arrivals
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in-sample and out-of-sample periods. In addition, 
Table  5 shows that, according to Pearson’s residual 
autocorrelation, the Zhu [38] model also yields a good 
fit for the out-of-sample period.

Figure  5 shows the one-day-ahead out-of-sample 
forecast of the number of arrivals in the out-of-sam-
ple period 2019–2020 using the Xu [37] model, given 
that this is the best forecaster. The solid line indicates 
the median and the dots reflect the observations (i.e., 
arrivals), while the different shades of blue reflect 
confidence intervals at different levels. Graphical evi-
dence confirms the goodness of the model forecasting 
capacity.

Discussion
Our evidence has clear implications in terms of cost 
minimization, as better predictions at the tails of the 
ED arrival distribution contribute to reduced costs 
through better workforce management for differ-
ent circumstances. Likewise, a better analysis of ED 
patient arrivals allows timely care without delays, lead-
ing to improved survival rates, reduced average hospi-
tal stay and reduced readmissions of patients admitted 
to the ED, all of which economically translates into 
cost reductions.

Our evidence is related with previous studies as 
follows. To forecast waiting times in an emergency 
department, Benevento et  al. [4] evaluate several 
machine learning techniques, including Lasso, Ran-
dom Forest, Support Vector Regression, Artificial 
Neural Network and Ensemble methods. They define 
as additional predictors new variables based on the 
queues, which captured the situation of hospital emer-
gencies, and show that Random Forest is a reasonable 
compromise solution. Our study adds to this analysis 
by exploring how the INGHARCH model is able to 

capture the dynamics of arrivals to a hospital emer-
gency department.

Similarly, Loureiro et  al. [24] evaluate the appli-
cation of the CRISP-DM (Cross-Industry Standard 
Process for Data Mining) methodology to a demon-
stration case of queue waiting time prediction, with 
the objective of studying a machine learning (ML) 
method for estimating queue waiting time. The com-
putational experiments were based on two main vali-
dation procedures: a standard cross-validation and 
a sliding window scheme. Overall, competitive and 
quality results were obtained using an AutomatedML 
(AutoML) algorithm fed with newly engineered fea-
tures. In fact, the AutoML model proposed by the 
authors produces a small error (5 to 7  min), while 
requiring a reasonable computational effort. With 
less computational effort, the model presented in the 
current paper allows a data fit whose result does not 
differ too much from the one presented by the afore-
mentioned Loureiuro et al.

von Wagner et  al. [30] show how to accurately and 
automatically characterize patient flow in an emer-
gency department using a combination of data from a 
real-time locating system (RTLS) and other traditional 
hospital information systems, such as electronic medi-
cal records (EMR) and laboratory information systems. 
The hospital can use the information to identify bot-
tlenecks and to develop strategies to optimize patient 
flows. Those authors used different performance indi-
cators, such as total length of stay, to assess Emergency 
Department time tasks, which is consistent with our 
study. One of their main conclusions is that there is 
a large difference between length of stay using only 
electronic medical record data and that calculated by 
combining data from electronic medical records and 
real-time location systems; a limitation we also found 
in our study.

Table 3 Parameters estimates and standard deviation (in parenthesis) for the model in Eq. (7)

***, **, and * indicate that the parameter is significant at 1%, 5% and 10%, respectively. The parameters are estimated using the full sample. Parameter ω in Eq. (7) is 
obtained by weighting, by (1 −α − β ), the mean of the number of arrivals on days not affected by the dummies

α β θ γWinter γMonday γWeekend γCOVID LogLik AIC BIC

Zhu [38] 0.27 *** 0.68 *** 235.14 *** ‑0.00 *** 0.18 *** ‑0.07 *** ‑0.03 *** ‑10,726 21,467 21,507

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Xu et al. [37] 0.26 *** 0.67 *** 0.37 *** 0.37 ** 0.17 *** ‑0.07 *** ‑0.03 *** ‑10,723 21,461 21,500

(0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00)

Poisson 0.18 *** 0.77 *** ‑0.00 *** 0.17 *** ‑0.07 *** ‑0.02 *** ‑11,537 23,086 23,120

(0.01) (0.01) (0.00) (0.00) (0.00) (0.00)
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A. Poisson model

B. Zhu (2011) model

C. Xu (2012) model

Fig. 3 Autocorrelation functions and cumulative periodograms of the Pearson residuals. A Poisson model. B Zhu [38] model. C Xu [37] model
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Overall, our results suggest that INGARCH modelling 
is a useful support for short-term ED planning to assign 
rotas or locate staff for unexpected surges in patient arriv-
als. Improved forecasting of ED arrivals is a first step to 
implementing useful real-time management algorithms 
that offer solutions to complex ED management, in terms 
of both resource use and health implications for patients. 
Furthermore, better forecasting of ED arrivals is useful to 
predict hospital admissions and the impact of ED arrivals 
on bed utilization and length of stay [27]. However, a task 
we leave for future research is how ED arrivals and their 
forecast through INGARCH models could ultimately 
shape hospital admissions and bed utilization.

Conclusions
Hospital EDs experience fluctuating and sometimes 
unexpected demand pressures, which complicates the 
efficient deployment of resources and potentially affect 
the quality of healthcare provision. Therefore, modelling 
and forecasting ED arrivals is critical to deal with inflows 
to EDs. The usefulness of INGARCH models to pre-
dict daily ED arrivals is that they can take into account 
past mean values and past observations in reflecting the 
mean parameter of the conditional negative binomial 

Fig. 4 Probability integral transformation (PIT) for the out‑of‑sample period 2019–2020

Table 4 In‑sample and out‑of‑sample MSE and MAE for ED 
arrivals

The one-day-ahead forecast is estimated using the information available up to 
the previous day

MSE MAE

In-sample 
(2015–
2018)

Out-of-
sample 
(2019–2020)

In-sample 
(2015–
2018)

Out-of-
sample 
(2019–2020)

Zhu [38] 1251.28 1020.70 27.74 25.16

Xu et al. [37] 1102.80 979.06 25.91 24.52

Poisson 1102.00 981.08 25.94 24.58

Table 5 Pearson’s autocorrelation from the raw data and the 
residuals from the models in the out‑of‑sample periods (2019–
2020)

Raw data Zhu Xu Poisson

correlation 0.85 ‑0.03 ‑0.07 0.03

p‑value 0.0000 0.4863 0.0597 0.2103



Page 11 of 12Reboredo et al. Health Economics Review           (2023) 13:51  

distribution, and can also characterize temporal dynam-
ics in the volatility of patient arrivals.

Our in-sample and out-of-sample empirical results for 
patient arrivals at a large Spanish university hospital con-
firm that the INGARCH model yields better results that 
the Poisson model, particularly for the lower and upper 
quantiles of the forecasted distribution of arrivals. The 
fact that an INGARCH models yields a better fit for the 
extreme quantiles is particularly useful for management 
decision-making regarding resource allocation, both 
when a surge in arrivals may negatively affect health-
care, or when a drop in arrivals may render resources 
spare. Likewise, the variability of patient arrivals is well 
informed by INGARCH model estimations.
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